Answer :
Let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex].
Starting from Karissa's work:
1. The original equation is:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
2. Distribute and simplify both sides:
- Left side: [tex]\(\frac{1}{2}(x - 14) + 11\)[/tex] becomes [tex]\(\frac{1}{2}x - 7 + 11\)[/tex].
- Right side: [tex]\(\frac{1}{2}x - (x - 4)\)[/tex] becomes [tex]\(\frac{1}{2}x - x + 4\)[/tex].
So now we have:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
3. Combine like terms:
- Left side: [tex]\(-7 + 11\)[/tex] simplifies to [tex]\(4\)[/tex], so the equation is [tex]\(\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4\)[/tex].
- Right side: [tex]\(\frac{1}{2}x - x\)[/tex] simplifies to [tex]\(-\frac{1}{2}x\)[/tex].
So it becomes:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract [tex]\(4\)[/tex] from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the [tex]\(-\frac{1}{2}x\)[/tex] on the right side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Simplifying gives:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].
Starting from Karissa's work:
1. The original equation is:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
2. Distribute and simplify both sides:
- Left side: [tex]\(\frac{1}{2}(x - 14) + 11\)[/tex] becomes [tex]\(\frac{1}{2}x - 7 + 11\)[/tex].
- Right side: [tex]\(\frac{1}{2}x - (x - 4)\)[/tex] becomes [tex]\(\frac{1}{2}x - x + 4\)[/tex].
So now we have:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
3. Combine like terms:
- Left side: [tex]\(-7 + 11\)[/tex] simplifies to [tex]\(4\)[/tex], so the equation is [tex]\(\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4\)[/tex].
- Right side: [tex]\(\frac{1}{2}x - x\)[/tex] simplifies to [tex]\(-\frac{1}{2}x\)[/tex].
So it becomes:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
4. Subtract [tex]\(4\)[/tex] from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the [tex]\(-\frac{1}{2}x\)[/tex] on the right side:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Simplifying gives:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].