College

Karissa begins to solve the equation:

[tex]\[

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)

\][/tex]

Her work is correct and is shown below:

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]
B. [tex]\(-\frac{1}{2}\)[/tex]
C. [tex]\(0\)[/tex]
D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Let's solve the equation step-by-step:

We start with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

Simplify both sides:

1. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

2. Calculate [tex]\(\frac{1}{2} \times 14\)[/tex]:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Now, simplify both sides:

3. Simplify the left side:
[tex]\[
\frac{1}{2}x + 4
\][/tex]

4. Simplify the right side:
[tex]\[
\frac{1}{2}x - x + 4 \Rightarrow -\frac{1}{2}x + 4
\][/tex]

We now have:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

To solve for [tex]\(x\)[/tex], add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

This simplifies to:
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{0}\)[/tex].