Answer :
Let's break down the problem step by step to find out what \( C(F) \) represents in the given context.
1. Understanding the Given Function:
The function given is \( C(F) = \frac{5}{9}(F - 32) \).
2. Analyzing the Function:
The function \( C(F) \) is used to convert a temperature from degrees Fahrenheit to degrees Celsius.
3. Breakdown of the Function:
- \( F \) represents the temperature in degrees Fahrenheit.
- \( F - 32 \): Here, you subtract 32 from the Fahrenheit temperature. This adjustment is done because the Fahrenheit and Celsius scales shift at 32°F (which is 0°C).
- \( \frac{5}{9} \times (F - 32) \): The factor \( \frac{5}{9} \) then scales the adjusted Fahrenheit temperature to convert it into the Celsius scale.
4. Interpretation:
Therefore, \( C(F) \) is a function that takes the input \( F \) (temperature in degrees Fahrenheit) and outputs a value in degrees Celsius.
5. Conclusion:
Based on the given function and its purpose, \( C(F) \) represents:
"The temperature of \( F \) degrees Fahrenheit converted to degrees Celsius."
Thus, the correct interpretation of what \( C(F) \) represents in this context is:
the temperature of [tex]\( F \)[/tex] degrees Fahrenheit converted to degrees Celsius.
1. Understanding the Given Function:
The function given is \( C(F) = \frac{5}{9}(F - 32) \).
2. Analyzing the Function:
The function \( C(F) \) is used to convert a temperature from degrees Fahrenheit to degrees Celsius.
3. Breakdown of the Function:
- \( F \) represents the temperature in degrees Fahrenheit.
- \( F - 32 \): Here, you subtract 32 from the Fahrenheit temperature. This adjustment is done because the Fahrenheit and Celsius scales shift at 32°F (which is 0°C).
- \( \frac{5}{9} \times (F - 32) \): The factor \( \frac{5}{9} \) then scales the adjusted Fahrenheit temperature to convert it into the Celsius scale.
4. Interpretation:
Therefore, \( C(F) \) is a function that takes the input \( F \) (temperature in degrees Fahrenheit) and outputs a value in degrees Celsius.
5. Conclusion:
Based on the given function and its purpose, \( C(F) \) represents:
"The temperature of \( F \) degrees Fahrenheit converted to degrees Celsius."
Thus, the correct interpretation of what \( C(F) \) represents in this context is:
the temperature of [tex]\( F \)[/tex] degrees Fahrenheit converted to degrees Celsius.