High School

a) \(\frac{1}{3} h = \_\_ \text{ min}\)

b) \(\frac{2}{3} h = \_\_ \text{ min}\)

c) \(15 \text{ min} = \_\_ h\)

d) \(25 \text{ min} = \_\_ h\)

e) \(45 \text{ s} = \frac{45}{60} \text{ min}\)

f) \(\frac{3}{4} h = \_\_ \text{ min}\)

Answer :

Let's solve each part of the question step-by-step:

(a) [tex]\frac{1}{3} \text{ h}[/tex]

To convert hours to minutes, remember that 1 hour equals 60 minutes. Thus:

[tex]\frac{1}{3} \text{ h} = \frac{1}{3} \times 60 \text{ min} = 20 \text{ min}[/tex]

So, [tex]\frac{1}{3} \text{ h} = 20 \text{ min}[/tex].

(b) [tex]\frac{2}{3} \text{ h}[/tex]

Similarly:

[tex]\frac{2}{3} \text{ h} = \frac{2}{3} \times 60 \text{ min} = 40 \text{ min}[/tex]

Thus, [tex]\frac{2}{3} \text{ h} = 40 \text{ min}[/tex].

(c) [tex]15 \text{ min}[/tex]

Convert minutes to hours by dividing by 60:

[tex]15 \text{ min} = \frac{15}{60} \text{ h} = \frac{1}{4} \text{ h}[/tex]

So, 15 minutes is [tex]\frac{1}{4} \text{ h}[/tex].

(d) [tex]25 \text{ min}[/tex]

Convert minutes to hours:

[tex]25 \text{ min} = \frac{25}{60} \text{ h} \approx 0.4167 \text{ h}[/tex]

Hence, 25 minutes is approximately [tex]0.4167 \text{ h}[/tex].

(e) [tex]45 \text{ s}[/tex]

This part is already converted correctly:

[tex]45 \text{ s} = \frac{45}{60} \text{ min} = \frac{3}{4} \text{ min}[/tex]

(f) [tex]\frac{3}{4} \text{ h}[/tex]

Similarly convert hours to minutes:

[tex]\frac{3}{4} \text{ h} = \frac{3}{4} \times 60 \text{ min} = 45 \text{ min}[/tex]

So, [tex]\frac{3}{4} \text{ h} = 45 \text{ min}[/tex].

These calculations are all based on the conversion factors: 1 hour = 60 minutes and 1 minute = 60 seconds.