Answer :
Let's solve each part of the question step-by-step:
(a) [tex]\frac{1}{3} \text{ h}[/tex]
To convert hours to minutes, remember that 1 hour equals 60 minutes. Thus:
[tex]\frac{1}{3} \text{ h} = \frac{1}{3} \times 60 \text{ min} = 20 \text{ min}[/tex]
So, [tex]\frac{1}{3} \text{ h} = 20 \text{ min}[/tex].
(b) [tex]\frac{2}{3} \text{ h}[/tex]
Similarly:
[tex]\frac{2}{3} \text{ h} = \frac{2}{3} \times 60 \text{ min} = 40 \text{ min}[/tex]
Thus, [tex]\frac{2}{3} \text{ h} = 40 \text{ min}[/tex].
(c) [tex]15 \text{ min}[/tex]
Convert minutes to hours by dividing by 60:
[tex]15 \text{ min} = \frac{15}{60} \text{ h} = \frac{1}{4} \text{ h}[/tex]
So, 15 minutes is [tex]\frac{1}{4} \text{ h}[/tex].
(d) [tex]25 \text{ min}[/tex]
Convert minutes to hours:
[tex]25 \text{ min} = \frac{25}{60} \text{ h} \approx 0.4167 \text{ h}[/tex]
Hence, 25 minutes is approximately [tex]0.4167 \text{ h}[/tex].
(e) [tex]45 \text{ s}[/tex]
This part is already converted correctly:
[tex]45 \text{ s} = \frac{45}{60} \text{ min} = \frac{3}{4} \text{ min}[/tex]
(f) [tex]\frac{3}{4} \text{ h}[/tex]
Similarly convert hours to minutes:
[tex]\frac{3}{4} \text{ h} = \frac{3}{4} \times 60 \text{ min} = 45 \text{ min}[/tex]
So, [tex]\frac{3}{4} \text{ h} = 45 \text{ min}[/tex].
These calculations are all based on the conversion factors: 1 hour = 60 minutes and 1 minute = 60 seconds.