Answer :
To solve for [tex]\( t \)[/tex] in the equation [tex]\( s = \frac{2x + t}{r} \)[/tex], follow these steps:
1. Remove the fraction: Multiply both sides of the equation by [tex]\( r \)[/tex] to eliminate the fraction. This gives us:
[tex]\[
s \cdot r = 2x + t
\][/tex]
2. Isolate [tex]\( t \)[/tex]: Subtract [tex]\( 2x \)[/tex] from both sides of the equation to solve for [tex]\( t \)[/tex]. This results in:
[tex]\[
t = s \cdot r - 2x
\][/tex]
Now, let's compare the derived expression for [tex]\( t \)[/tex] with the given options:
- [tex]\(\frac{s}{r} - 2x\)[/tex]
- [tex]\(\frac{s \cdot r}{2x}\)[/tex]
- [tex]\(s \cdot r + 2x\)[/tex]
- [tex]\(s \cdot r - 2x\)[/tex]
The correct expression for [tex]\( t \)[/tex] is [tex]\( s \cdot r - 2x \)[/tex].
Therefore, the correct answer is [tex]\( s \cdot r - 2x \)[/tex].
1. Remove the fraction: Multiply both sides of the equation by [tex]\( r \)[/tex] to eliminate the fraction. This gives us:
[tex]\[
s \cdot r = 2x + t
\][/tex]
2. Isolate [tex]\( t \)[/tex]: Subtract [tex]\( 2x \)[/tex] from both sides of the equation to solve for [tex]\( t \)[/tex]. This results in:
[tex]\[
t = s \cdot r - 2x
\][/tex]
Now, let's compare the derived expression for [tex]\( t \)[/tex] with the given options:
- [tex]\(\frac{s}{r} - 2x\)[/tex]
- [tex]\(\frac{s \cdot r}{2x}\)[/tex]
- [tex]\(s \cdot r + 2x\)[/tex]
- [tex]\(s \cdot r - 2x\)[/tex]
The correct expression for [tex]\( t \)[/tex] is [tex]\( s \cdot r - 2x \)[/tex].
Therefore, the correct answer is [tex]\( s \cdot r - 2x \)[/tex].